Nanotube liquid crystal elastomers: photomechanical response and flexible energy conversion of layered polymer composites.
نویسندگان
چکیده
Elastomeric composites based on nanotube liquid crystals (LCs) that preserve the internal orientation of nanotubes could lead to anisotropic physical properties and flexible energy conversion. Using a simple vacuum filtration technique of fabricating nanotube LC films and utilizing a transfer process to poly (dimethyl) siloxane wherein the LC arrangement is preserved, here we demonstrate unique and reversible photomechanical response of this layered composite to excitation by near infra-red (NIR) light at ultra-low nanotube mass fractions. On excitation by NIR photons, with application of small or large pre-strains, significant expansion or contraction of the sample occurs, respectively, that is continuously reversible and three orders of magnitude larger than in pristine polymer. Schlieren textures were noted in these LC composites confirming long range macroscopic nematic order of nanotubes within the composites. Order parameters of LC films ranged from S(optical) = 0.51-0.58 from dichroic measurements. Film concentrations, elastic modulus and photomechanical stress were all seen to be related to the nematic order parameter. For the same nanotube concentration, the photomechanical stress was almost three times larger for the self-assembled LC nanotube actuator compared to actuator based on randomly oriented carbon nanotubes. Investigation into the kinetics of photomechanical actuation showed variation in stretching exponent β with pre-strains, concentration and orientation of nanotubes. Maximum photomechanical stress of ∼ 0.5 MPa W(-1) and energy conversion of ∼ 0.0045% was achieved for these layered composites. The combination of properties, namely, optical anisotropy, reversible mechanical response to NIR excitation and flexible energy conversion all in one system accompanied with low cost makes nanotube LC elastomers important for soft photochromic actuation, energy conversion and photo-origami applications.
منابع مشابه
Dimensional dependence of photomechanical response in carbon nanostructure composites: a case for carbon-based mixed-dimensional systems.
This paper reports dimensional dependence of the mechanical response in carbon nanostructure composites to near-infrared (NIR) light. Using polydimethylsiloxane, a common silicone elastomer, composites were fabricated with one-dimensional multi-wall carbon nanotubes (MWNTs), two-dimensional single-layer graphene, two-and-a-half-dimensional graphene nanoplatelets and three-dimensional highly ord...
متن کاملPhotomechanical actuation of liquid crystal nanotube elastomers
................................................................................................................................... iv LIST OF FIGURES ....................................................................................................................... vi
متن کاملPhotopiezoelectric composites of azobenzene-functionalized polyimides and polyvinylidene fluoride.
Light is a readily available and sustainable energy source. Transduction of light into mechanical work or electricity in functional materials, composites, or systems has other potential advantages derived from the ability to remotely, spatially, and temporally control triggering by light. Toward this end, this work examines photoinduced piezoelectric (photopiezoelectric) effects in laminate com...
متن کاملPhotomechanical responses of carbon nanotube/polymer actuators
Recent studies have investigated the photomechanical properties of carbon nanotubes which can be utilized to construct optical actuators. In this paper we compare the photomechanical response from single-wall and multi-wall carbon nanotube/polymer systems in multilayer and nanocomposite actuator constructions. Incorporating polymers in the actuators, single-wall and multi-wall nanotubes show si...
متن کاملAliphatic flexible spacer length controls photomechanical response in compact, ordered liquid crystalline polymer networks
The aliphatic spacer length connected to the rigid mesogenic cores is shown to control the structural organization and mechanical actuation in response to light-stimulus in azobenzene-functionalized liquid crystalline polymers networks. The spacer lengths in the mesogenic host (non-photochromic) and in the photo-active azobenzene-functionalized cross linker are parametrically varied to create m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanotechnology
دوره 25 35 شماره
صفحات -
تاریخ انتشار 2014